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Methods 
In order to assess the research emphasis and approaches used for studying viral host jumps, we focused 
on four specific viruses: Influenza A (IAV), Severe acute respiratory syndrome coronavirus (SARS-coV), 
canine parvovirus (CPV) and Venezuelan equine encephalitis virus (VEEV) because these viruses have 
been: 1) among the most researched on the topic of host jumps, or 2) studied using approaches that we 
deemed to be extremely fruitful for understanding evolutionary mechanisms of host jumps. We 
acknowledge that other viruses (e.g., HIV) fall into these categories, and thus emphasize that our goal is 
not to be comprehensive but to use a few strong examples to point out methodological strengths and 
weaknesses, data gaps and biases and effective future directions.  
 
Search methodology. We used the Web of Science (WofS) to search for studies that addressed host 
jumps or changes in host range for each of the four viruses. All searches were conducted on Jan. 20th, 
2010 meaning that publications after this date were excluded. Our search query (see below) contained a 
set of terms that are commonly used in addressing host jumps as well as the name of the specific virus 
(and variants of this name where necessary). We required that the host jump terms and virus name be 
in the WofS "Topic" category which includes titles, abstracts and keywords. We refined each search by 
only selecting journal articles. We emphasize that our search results are not meant to be absolutely 
quantitative but should be regarded as a sample of the studies that address host jumps. This approach 
allows us to draw conclusions about the relative effort dedicated towards collecting different types of 
data and addressing evolutionary hypotheses, which are our goals. Our search query was: (TS=("host 
jump*" OR "host switch*" OR ("host species" SAME (different OR novel OR new OR alternat* )) OR 
("host range" SAME (expan* OR decreas* OR increas* OR change* OR shift)) OR "host specialization" OR 
"host specificity" OR "cross-species" OR "host transfer" OR "cross-host" OR "species barriers" OR 
"species tropism" OR "animal-to-human" OR "interspecies trans*" OR "inter-species trans*" OR 
"zoonotic transm*" OR "host radiation" OR spillover OR "spill over" OR xenotrop*) AND TS=(virus 
name)).  
 
Criteria for paper selection. We screened the final set of host jump papers for each virus to eliminate 
inappropriate hits and to subdivide the relevant papers into 3 categories for further analysis. The 
following papers were eliminated: review articles, book chapters, papers that did not address host range 
change or host jumps, papers that did not address the specified virus or papers that were in languages 
other than English, French or German (languages in which the authors are competent). Papers in the 
final set were scored as (see column Supp. Table 1, column 3): 1) 0 for papers that address host range 
change or host jumps but do not collect data that would be relevant for testing evolutionary 
hypotheses, 2) 1 for papers that collect relevant data for addressing evolutionary hypotheses but they 
do not explicitly test an evolutionary hypothesis nor mention evolutionary processes in the abstract, and 
3) 2 for papers that collect data that address evolutionary mechanisms of host range change or host 
jumps. We classified data as being relevant to addressing evolutionary hypotheses if the study included 
genetic or phenotypic viral data.  
 
Paper review. Papers in the 0 category were not analyzed further except for being tallied as part of the 
denominator representing the total set of papers addressing host range change or host jumps. For 1 
papers, only the virus type, broad scope of the sampling, type of data and approach were recorded (first 
4 sections of Supp. Table 1) abstracts were recorded from information in the abstracts. For 2 papers, the 
entire paper was used to fill out the data in all of Supp. Table 1. By tallying the number of papers in each 
category, we calculated the effort on addressing evolutionary hypotheses relative to total effort on host 
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jumps (2 / 0 + 1 + 2), the effort on addressing evolutionary hypotheses out of total data that are relevant 
to evolutionary hypotheses (2 / 1 + 2), and the effort on collecting evolutionary-type data relative to 
total host jump data (2 + 1 / 0 + 1 + 2). 
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Supp. Figure 1. Research effort on viral host jumps. Total numbers of papers for all 4 viruses 
combined (All) and each virus individually are shown on the x-axis. Papers were categorized into 
three broad groups: 1) host jump studies that do not collect evolutionary data (white bars, papers 
not reviewed), 2) host jump  studies that collect evolutionary data but do not interpret the role of 
evolutionary processes in the host jump  (grey bars, broadly reviewed), and 3) host jump  studies 
that collect evolutionary data and explicitly interpret the role of  evolutionary processes (black 
bars, fully reviewed).

Total numbers of papers for all 4 viruses combined (All) and each virus individually are shown on 
the x-axis. Papers were categorized into three broad groups: 1) host jump studies that do not collect 
evolutionary data (white bars, papers not reviewed), 2) host jump  studies that collect evolutionary 
data but do not interpret the role of evolutionary processes in the host jump  (grey bars, broadly 
reviewed), and 3) host jump  studies that collect evolutionary data and explicitly interpret the role of  
evolutionary processes (black bars, fully reviewed).
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Supp. Figure 4. Inclusion of experiment in studies with relevant data. All studies with 
relevant data grouped by presence of experiment and whether the target virus was sampled 
from nature. Studies for all four viruses are combined in the top chart. Three categories are: 
No experiment (blue) experiment on artificial strains (green i e passaged extensively in theNo experiment (blue), experiment on artificial strains (green, i.e., passaged extensively in the
lab) and experiment on natural strains (red). Numbers indicate the total number of papers 
surveyed.

All studies with relevant data grouped by presence of experiment and whether the target virus was 
sampled from nature. Studies for all four viruses are combined in the top chart. Three categories are: 
No experiment (blue), experiment on artificial strains (green, i.e., passaged extensively in the lab) and 
experiment on natural strains (red). Numbers indicate the total number of papers surveyed.
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S5 | Types of data used for analyses of evolutionary processes.
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Supp. Figure 5. Types of data used for analyses of evolutionary processes. Studies are 
grouped by whether they included genetic, phenotypic, host effects data or combinations of these 
categories (e.g. G+P means that the study includes genotypic and phenotypic data; top plot). 
Only studies that tested evolutionary hypotheses (black Genetic data (Genotype, blue) includes 
genetic sequence or protein structure. Phenotype (red) involves mars from Fig. 1) are included. 
Measurement of a viral trait such as receptor binding, polymerase replication efficiency, within-
host fitness (time course of infectious particles), transmission rate or other. Host (yellow) involves 
measurement of a host pathology (Hpath) or immune response (Hsero). Categories in top plot 
are mutually exclusive while categories for each separate virus (second plot to last plot) are not. 
Genotype (G), Phenotype (P), Host (H). The maximum value for each of the Y-axes is the total 
number of papers surveyed (134 for All, top). 

Studies are grouped by whether they included genetic, phenotypic, host effects data or combinations 
of these categories (e.g. G+P means that the study includes genotypic and phenotypic data; top 
plot). Only studies that tested evolutionary hypotheses (black Genetic data (Genotype, blue) 
includes genetic sequence or protein structure. Phenotype (red) involves mars from Fig. 1) are 
included. Measurement of a viral trait such as receptor binding, polymerase replication efficiency, 
withinhost fitness (time course of infectious particles), transmission rate or other. Host (yellow) 
involves measurement of a host pathology (Hpath) or immune response (Hsero). Categories in top 
plot are mutually exclusive while categories for each separate virus (second plot to last plot) are 
not. Genotype (G), Phenotype (P), Host (H). The maximum value for each of the Y-axes is the total 
number of papers surveyed (134 for All, top).

SUPPLEMENTARY INFORMATION

NatuRE REVIEws | microbiology   www.nature.com/reviews/micro

© 2010 Macmillan Publishers Limited.  All rights reserved. 

 



In format provided by Pepin et al. (NOVEMBER 2010)

S6 | Replication and experimental evolution in experimental studies.
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S Fi 6 R li ti d i t l l ti i i t l t di ThSupp. Figure 6. Replication and experimental evolution in experimental studies. The
scale of replication  in the design of experimental studies was divided into four categories 
(top): 1) the study includes  data from > 1 host jump event (Event), 2) the study includes > 1 
viral strain for a single host jump event (Strain), 3) the study does both 1 and 2 (Both), or 4) 
the study does not include replication at the scale of the host jump event or strains within 
and event. The scale of genetic sequencing in experimental studies was categorized as 
follows (bottom): 1) Sequence viruses from > one time point following replication in > onefollows (bottom): 1) Sequence viruses from > one time point following replication in > one
host or cell culture (Between), 2) Sequence viruses from > one time point  during  within-host 
replication (Within), 3) Include both 1 and 2 (Both), or 4) Do not collect sequence data in 
their experiments (i.e., no experimental evolution). Maximum value on Y-axis is the total 
number of experimental studies for all viruses. 

The scale of replication in the design of experimental studies was divided into four categories (top): 
1) the study includes data from > 1 host jump event (Event), 2) the study includes > 1 viral strain 
for a single host jump event (Strain), 3) the study does both 1 and 2 (Both), or 4) the study does not 
include replication at the scale of the host jump event or strains within and event. The scale of genetic 
sequencing in experimental studies was categorized as follows (bottom): 1) Sequence viruses from  
> one time point following replication in > one host or cell culture (Between), 2) Sequence viruses 
from > one time point during within-host replication (Within), 3) Include both 1 and 2 (Both), or 4) Do 
not collect sequence data in their experiments (i.e., no experimental evolution). Maximum value on 
Y-axis is the total number of experimental studies for all viruses.
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S7 | Model systems in experimental studies.
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Supp. Figure 7. Model systems in experimental studies. Data for all viruses are shown on 
the bottom plot.  The inset shows the patterns by virus. There are five categories which are 

t t ll l i h f l ft t i ht 1) Th t d l i it llnot mutually exclusive shown from left to right : 1) The study  only uses an in vitro or cell
culture-based host model system, 2) The study includes an animal host model that is not a 
natural component of the host jump system being studied, 3) The study includes an animal 
host model that is a natural component of the host jump system, 4) The study includes 
passaging as a form of transmission, 5) The study includes experimental transmission (i.e., 
hosts are allowed some degree of exposure to one another so that transmission can occur via 
a natural route) Maximum value on Y axis is the total number of experimental studies for alla natural route). Maximum value on Y-axis is the total number of experimental studies for all
viruses.

Data for all viruses are shown on the bottom plot. The inset shows the patterns by virus. There are 
five categories which are not mutually exclusive shown from left to right : 1) The study only uses an 
in vitro or cell culture-based host model system, 2) The study includes an animal host model that is 
not a natural component of the host jump system being studied, 3) The study includes an animal host 
model that is a natural component of the host jump system, 4) The study includes passaging as a 
form of transmission, 5) The study includes experimental transmission (i.e., hosts are allowed some 
degree of exposure to one another so that transmission can occur via a natural route). Maximum 
value on Y-axis is the total number of experimental studies for all viruses.
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